

Phase 1 Budget Status

February 14, 2013

- Phase 1 Baseline Budget Development and Evolution
- Risk & Vulnerability Assessment
- Contingencies & Reserves
- Design, Bidding and Construction Schedule
- Recommended Budget Adjustments
- Funding Strategies

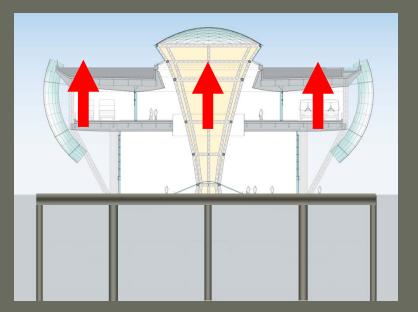
Transbay Transit Center

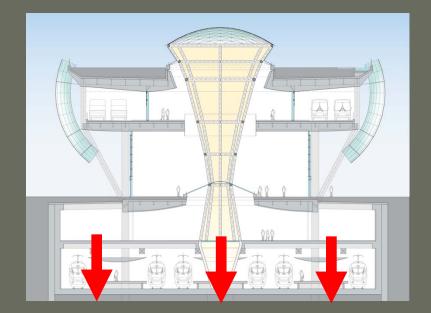
Initial Phase 1 Budget

Initial Phase 1 Budget Context

<u>June 2006</u>

• TJPA Board adopts phasing strategy <u>September 2007</u>


- TJPA Board authorizes negotiating with Pelli Clarke Pelli for architectural services <u>November 2007</u>
- Phase 1 Baseline Budget adopted by TJPA Board



Transbay Transit Center

The 2007 Phase 1 Baseline Budget of \$1,189M was based on:

• Top-down construction with below grade structure deferred

Basis of November 2007 \$1,189M Budget

Transbay Transit Center

The 2007 Phase 1 Baseline Budget of \$1,189M was based on:

- Top-down construction with below grade structure deferred
- Transit Center construction costs estimated based on HOK design scheme
- Park not included

Basis of November 2007 \$1,189M Budget

Transbay Transit Center

The 2007 Phase 1 Baseline Budget of \$1,189M was based on:

- Top-down construction with below grade structure deferred
- Transit Center construction costs estimated based on HOK design scheme
- Park not included
- January 2007 estimate of construction cost escalated at 3.5% annual rate
- FTA-required minimum levels of contingencies
- Demolition to commence August 2009 and Phase 1 construction to be completed in January 2014
- Concept validation of competition proposal against Scope Definition Report (HOK scheme) to be completed by the selected Architect after contract award

Transbay Transit Center

Revised Phase 1 Budget

- May 2008 TJPA awards design contract to Pelli Clarke Pelli Architects
- Design Schedule:
 - Concept Validation
 - Schematic Design
 - Design Development
 - Construction Documents

May '08 – Sept '08 Sept '08 – Feb '09 Mar '09 – Sept '09 Oct '09 – Nov '11

- September 2008 Completed Concept Validation of competition proposal against program requirements
- Incorporated many features not anticipated within the original design scope:
 - Five acre rooftop park
 - Geothermal and grey water systems
 - Natural lighting and ventilation
 - LEED Gold rather than LEED Silver
 - Competition architectural vision

- Costs maintained within the original \$1,189M baseline budget through Value Engineering efforts with PCPA and the CMGC
 - Eliminate bus deck enclosure
 - Eliminate two skylights enhanced park space
 - Reduce area of awning system
 - Refined structural system design
 - Refine park landscape design
- Cost containment benefitted from low rates of escalation and heightened market competition

- Challenges of implementing top-down construction identified during Schematic Design Phase
 - Effecting both Phase 1 and Phase 2 construction
- Constructability review and VE efforts identified \$100 million program savings if rail levels constructed in Phase 1
- February 2009 ARRA program announced; TJPA filed application to construct the rail levels in Phase 1
- June 2009 TJPA Board approved inclusion of rail levels in Phase 1 Design Development documents pending ARRA application

ARRA Award

- January 2010 TJPA notified of \$400 million ARRA award
- The \$400 million in ARRA funding provided the opportunity to:
 - Mitigate program risk
 - Construct a rail ready facility
 - Improved ground floor design
 - Save \$100 million in overall program costs
 - Defer land sales allowing for market recovery
 - Create an additional 12,000 jobs; a total of 48,000 in Phase 1
- May 2010 Revised Baseline Budget of \$1,589M adopted by TJPA Board

Revised \$1,589M Budget

The revised baseline budget considered:

- Cost to construct based on 50% design development documents independently estimated by Architect and CM/GC
- Cost containment realized through value engineering
- Actual costs incurred constructing the Temporary Terminal
- Award value of the demolition contract
- Deletion of Golden Gate Transit bus storage facility
- Updated estimates for Bus Ramps, Utility Relocation, and AC Transit bus storage facility
- Update of time-dependent programwide management and support costs

Revised \$1,589M Budget

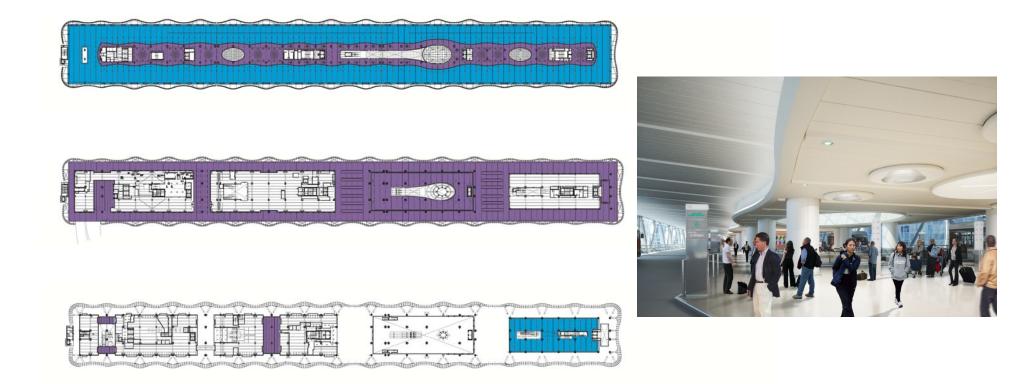
- Demolition to commence August 2010 and Phase 1 construction to be completed in October 2017
- Revised annual escalation based on available data:
 - 2010 = 0%
 - 2011 = 2.5%
 - 2012-completion = 3.5%
- Adjustments made for:
 - Further scope development
 - Implementation of CM/GC contracting strategy
 - Reallocation of management and support costs from Phase 2

May 2010 \$ \$1,589M Budget

Transbay Transit Center

0

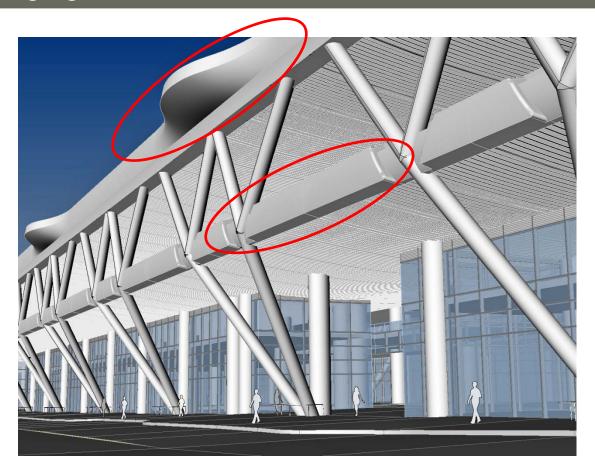
Project Costs	TOTAL (millions)
Temporary Terminal	\$25.3
Bus Storage	\$22.9
Demolition (Exist and Temp Term)	\$16.2
Utility Relocation	\$65.6
Transit Center Building Design	\$143.1
Transit Center Building Construction	\$909.7
Bus Ramps	\$40.2
ROW Acquisition	\$71.9
ROW Support	\$5.3
Programwide	\$243.6
Program Reserve	\$45.2
TOTAL	\$1,589.0


Phase 1 Milestones **Including Rail Levels Transbay Transit Center** Vacate Terminal/Begin Demolition August 2010 **Begin Shoring Wall Construction** March 2011 **Complete Excavation** July 2013 **Complete Below-Grade Construction** June 2014 October 2014 Complete Construction of Bus Ramps Complete Superstructure Construction August 2015 Complete Rooftop Park October 2016 **Begin Bus Operations** October 2017

May 2010

Transbay Transit Center

Additional Value Engineering to reduce costs:


• Switch ceilings from GFRC to metal

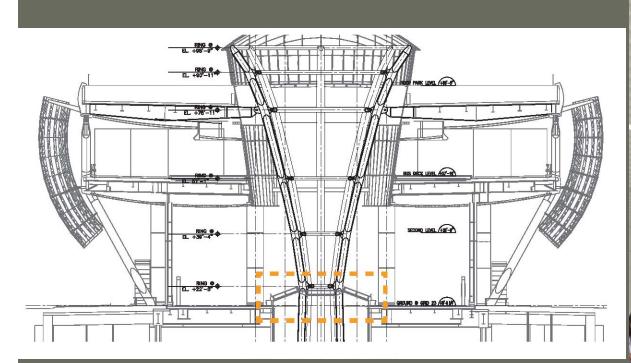
Transbay Transit Center

Additional Value Engineering to reduce costs:

• Changing Fascia material

Transbay Transit Center

Additional Value Engineering to reduce costs:


• Simplifying storefront glazing

Transbay Transit Center

Additional Value Engineering to reduce costs:

• Simplify light column floor at Grand Hall

Transbay Transit Center

Bid alternates incorporated in the Construction Documents provide flexibility in maintaining budget:

- Eliminate terrazzo floor at bus deck
- Monolithic sidewalk concrete
- Eliminate Beale Street elevator vestibule
- Alternate architectural finishes
- Simplified lighting solutions
- Alternate paving materials at park

Since design inception more than \$100 million in Value Engineering savings and deductive alternates have been developed in Phase I

Transbay Transit Center

Risk and Vulnerability Assessment

Protective Design Evolution

- Challenges to create safe and secure spaces have changed dramatically in last 20 years
- Conventional crime prevention is no longer an acceptable design standard of care
- Terror threats have overturned the protective design paradigm
- The planning, design and construction process has been reconstituted for projects of significance
- Adherence to "best practices" is essential
- Limit liability exposure
- Support SAFETY Act designation

SAFETY Act

- Passed as part of the Homeland Security Act of 2002
- Purpose is to eliminate or minimize tort liability should lawsuits arise after an act of terrorism
- Program operated by the U.S. Department of Homeland Security (DHS)
- Typically used by anti-terrorism technology engineers, vendors, and personal security services
- Also applicable to new building facilities

SAFETY Act Projects & Programs

- SAFETY Act projects/programs similar to the Transbay Program:
 - Port Authority of New York and New Jersey (2011); Protection of underwater rail tunnels and protective sleeve technology on suspension bridges
 - New York Yankees (2012); Integrated security system at Yankee Stadium
 - Cincinnati Airport (2011); Security management plan
 - New York Stock Exchange (2011); Multi-layered security system and services
 - National Football League (2008) Best practices guidelines for stadium security management
 - Major League Baseball (2012) Security review and oversight for the 2012 All-Star Game at Kauffman Stadium in Kansas City

RVA DGC and Obtaining SAFETY Act Designation/Certification

- DHS Directorate of Science and Technology will evaluate the TTC's RVA DGC protective design strategies and features, including:
 - Perimeter vehicular approach and pedestrian protection
 - Structural robustness
 - Façade and glazing anti-fragmentation performance
 - Arson event management
 - Ballistic weapons attack protection
 - CBRN detection and mitigation strategies
 - Evacuation, rescue, and recovery systems' operational survivability
 - Electronic security counter crime measures, including situational awareness
 - Emergency communications, mass notification, and evacuation planning
 - Cyber penetration and corruption event management
- The metrics for SAFETY Act approval focus on the provision of protective designs which enhance the TTC operations survivability and occupant life safety

Benefits of SAFETY Act Designation/Certification

- In the event of act of terrorism and resulting litigation against the TJPA:
 - Claims may only be filed in Federal court
 - Liability claims against the TJPA capped at the DHS-determined limits of liability insurance
 - Punitive damages are barred
 - Plaintiff's recovery is reduced by amounts the plaintiff receives from "collateral sources" (e.g., insurance benefits), thereby reducing the overall exposure of the TJPA

Protective Design Context Manmade and Natural Events

Transbay Transit Center

- 1993 New York City World Trade Center bombing
- 1995 Tokyo subway nerve agent attacks
- 1996 Oklahoma City bombing
- 2001 New York City WTC and Washington DC/Pentagon attacks
- 2004 Train bombings in Madrid
- 2005 Bus and subway bombings in London
- 2006 Mumbai train attacks
- 2008 Mumbai station attack
- 2010 Moscow Metro system attack
- 2011 Minsk Metro system attack
- Of 1,241 transportation attacks listed in the Terrorism Knowledge Base (1968 2007) approximately 1 in 3 involved buses

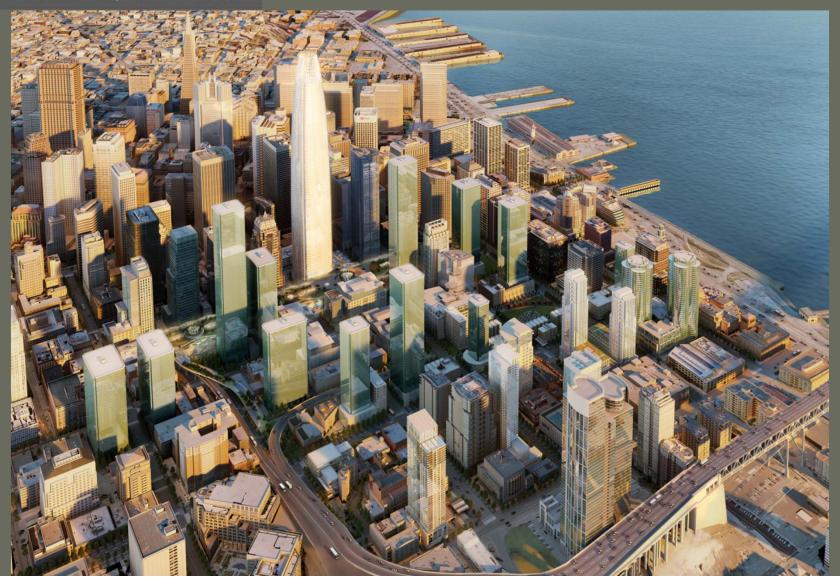
• And all-hazard event management

Government Agency and Design Response

- An ever-evolving and more comprehensive planning, design and facility operations process
- 1996 GSA and other agencies publish ISC/GSA design criteria; numerous subsequent revisions
 - Keep current with recent intelligence gathering
 - Accurately recommend protective design techniques
 - Incorporate emerging security design strategies
- Many additional guidelines and standards now used, such as:
 - Building Infrastructure Protection Series (BIPS)
 - Uniform Facilities Criteria (UFC)
 - FEMA 426 and 452
 - National Institute of Standards and Technology (NIST)

Transit Center Criticality

- "An Asset of Significance"
 - 4 blocks long largest in the US
 - Largest elevated park in the US 5.4 acres
 - Critical multimodal transportation infrastructure
 - Will serve more than 125,000 patrons daily
 - capacity of 45+ million/year
 - Centerpiece of the future SF downtown core
 - a major urban revitalization and an economic engine
 - Iconic architectural presence on ground level and skyline
 - Adjacent and connected to the tallest building west of the Mississippi and other towers
- Attributes require employing best practices for enhanced safety and security


San Francisco Significant Attributes

Transbay Transit Center

Transbay Transit Center The Hub of a New District

Transbay Transit Center

TJPA Response

- Proactive planning: Safety and security have been in the program from inception
- Retained world class design, engineering, risk assessment professionals, and security SMEs
- Performed peer reviews of significant event responses
- Engaged in a rigorous, government best practice process to assess and address vulnerabilities
- Highly structured process involving knowledgeable and certified firms and subject matter experts

Implementing Risk Assessment

- Performed initial 2009 Risk and Vulnerability Assessment (RVA) on conceptual design then updated in 2011 – 2012 prior to finalizing construction documents
 - Update initiated in 2011 and completed in 2012
 - Addressed design development from conceptual phase to final design phase
 - Incorporates the most current Government and security industry standards, design strategies, lessons learned and intelligence gathered (DHS/S&T, DHS/BioWatch, DHS/DNDO, DHS/FEMA, NIOSH, DOS, DOD, National Counterterrorism Center, DHS/NCIS, ATF, AASHTO, ASIS, SFPD, SFFD, etc.)
 - Correct and diligent approach for a facility of this significance
 - Reflects appropriate planning and agency conscience in response to current security design standards

Risk Assessment Guidelines & Standards

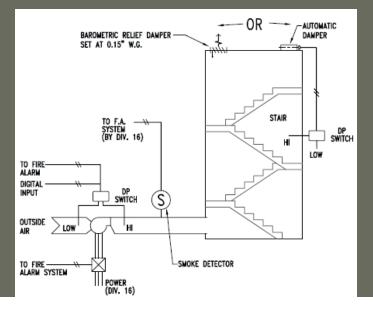
- BIPS 06/FEMA 426, Reference Manual to Mitigate Potential Terrorist Attacks Against Buildings (2011)
- FEMA 452, A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings (2005)
- DHS, National Infrastructure Protection Plan (2009)
- GSA/ISC, Security Design Criteria for New Federal Office Buildings and Major Modernization Projects (2010)
- DOD, Unified Facility Criteria (UFC) Minimum Antiterrorism Standards for Buildings (2012)
- CrimeCap Index, San Francisco, (2011)
- The Lipman Report (October 15, 2010)
- Numerous others

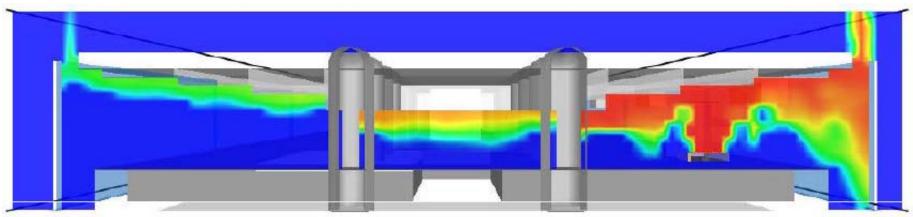
RVA Process Justification

- Although no facility can be free of all risks, Security planning is essential to create safe places
- Process balances business mission requirements against postulated threats to identified facility vulnerabilities
- Recommends Design Guidance Criteria for the design team to implement measures to minimize the risks
- Government approved and mandated process used in 2009 and 2012 to:
 - Ensure excellence in the assessment process and findings
 - Achieve desired results of reducing vulnerabilities/improved safety
 - Demonstrate a standard of care for reduced TJPA liability
- Essential to obtaining SAFETY Act Designation/Certification

Additional RVA Process Benefits

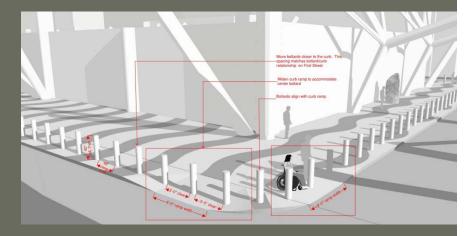
- Increased design team sensitivity and awareness
 - Create an informed facility design with appropriate safety and security features
- Established definitive DGC for clarity in objectives
- Insured a multi-disciplinary approach to designing a safe facility
 - RVA and security SMEs and designers considered all elements (structure, architecture, landscape, mech/HVAC, electrical, fire protection, lighting, electronic technologies, etc.)
 - Provided official forum for security SME's, design professionals and members of SFPD and SFFD to arrive at balanced solutions
 - Ensured a comprehensive and holistic approach
- Developed consensus security strategy for design and informed future security management policies and procedures
- Best positions the TJPA to receive additional future federal funding

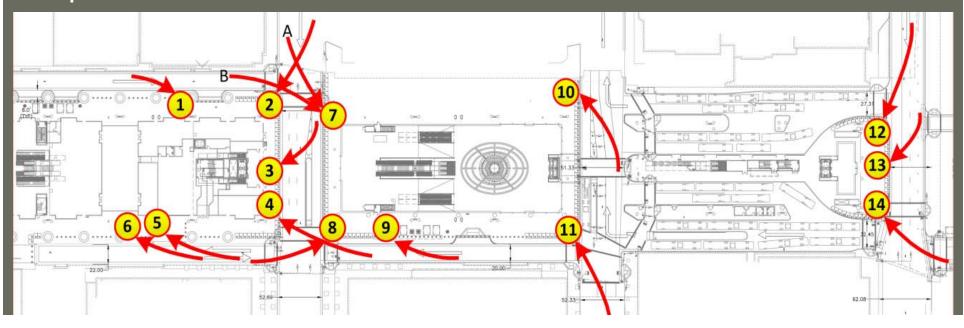

Transbay Transit Center


Facility Protective Design Categories

- Bus, Train and Other Fire Event Management
- Vehicular and Pedestrian Perimeter Protection
- Radio, Cellular, and Mass Notification Communications
- Glazing Systems Hazard Management
- Structural Systems Seismic, Fire, & Explosive Performance
- Evacuation, Rescue & Recovery Pathways Survivability
- Evacuation, Rescue & Recovery Supporting Systems Operational Resiliency
- Situational Awareness, Access Control, & Intrusion Detection
- CBRN Detection and Mitigation

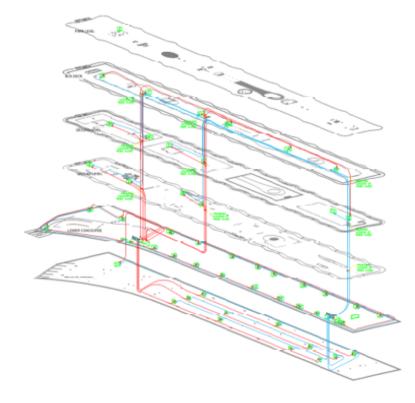
Incorporating Protective Design Features: Bus and Train Fire Management


- Computer modeling of fire and smoke conditions
- Significantly enhance smoke and fire detection, fire suppression and smoke control systems
- Informed by SFFD, Amtrak, NFPA, & 3 groups of fire SMEs



Incorporating Protective Design Features: Managing Exterior Threats

- Computer based modeling
- Enhanced protective perimeter
- Increased standoff, increased bollard ratings, additional operable barriers and pedestrian closures

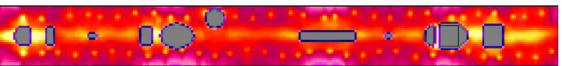


Incorporating Protective Design Features: Communications and Incident Response

 Implement Converged IT Network to support audible & visual paging, emergency responder interoperability, cellular communications, wireless communications, and Mass Notification System

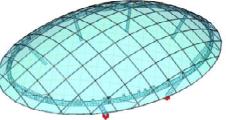
Incorporating Protective Design Features: Communications and Incident Response

- Centralized state-of-the-art Security Operations Center and backup
- Primary and backup Fire Command Center


Incorporating Protective Design Features: Communications and Incident Response

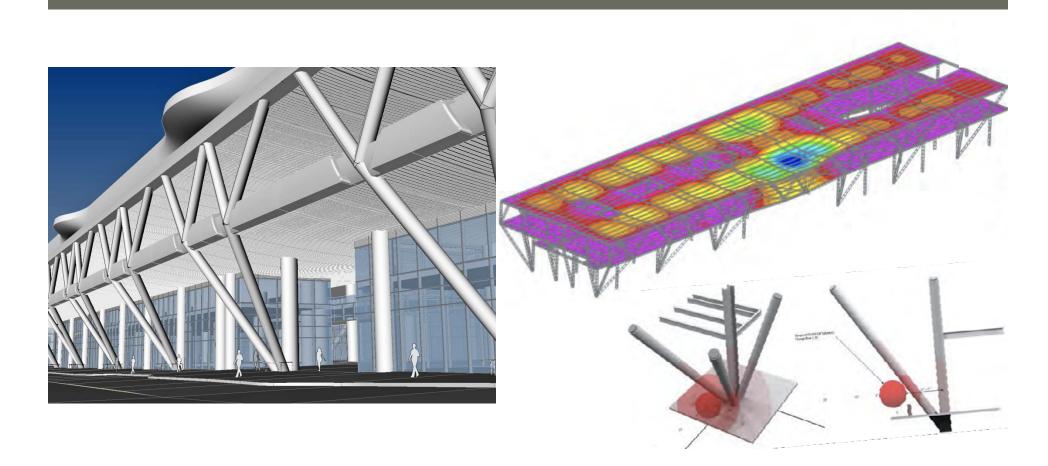
- Creation of a Mass Notification System
- Computer-based modeling to ensure communications audibility and intelligibility

On-Building Design – STI Plan View (15) Reinkus-Heinz Iconyx IC8 and (2) Reinkus-Heinz Iconyx IC16 steerable loudspeaker arrays placed on buildings

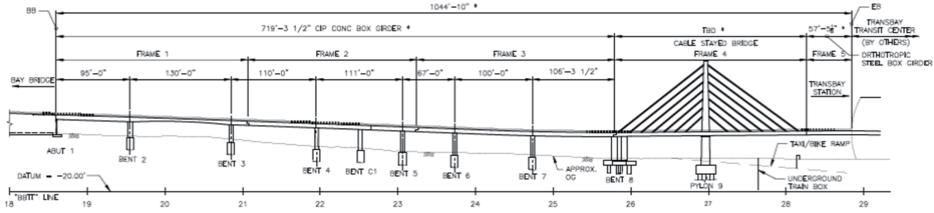

Pylon Design – STI Plan View (63) K-Array Kobra KK50 loudspeaker arrays concealed in the pylons

Incorporating Protective Design Features: Glazing Systems

- Enhanced glazing retention and support systems modeling and analysis
 - Floors, skylights, curtain walls, and interior finishes

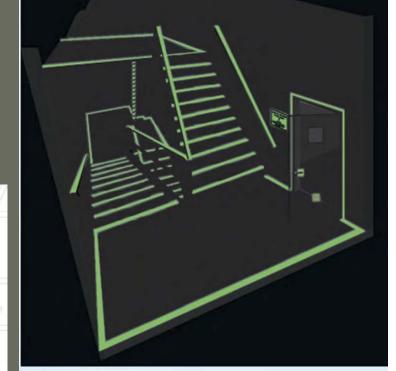


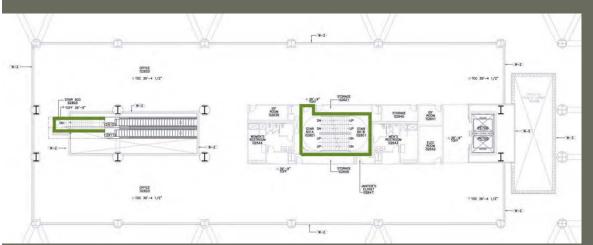
Incorporating Protective Design Features: Structural Evaluation


- Additional computer modeling and analysis
- Robust structure

Incorporating Protective
Design Features:
Bus Ramps Structural Evaluation

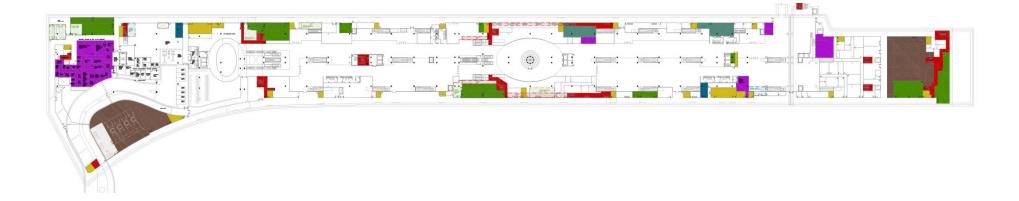
• Additional computer modeling and analysis



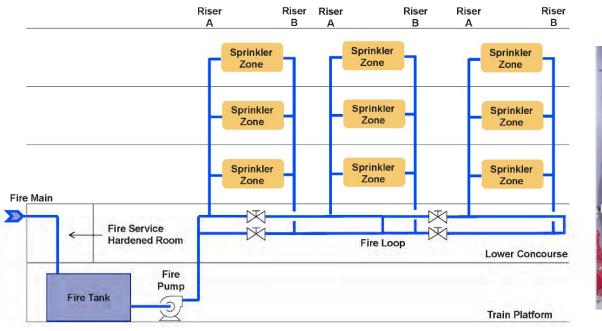


Incorporating Protective Design Features: ERR Stairs and Passageways

- Evacuation, Rescue, and Recovery
 - Enhanced emergency stairwell survivability for egress and emergency responder reentry informed by computer modeling
 - Improved lighting
 - Improved wayfinding

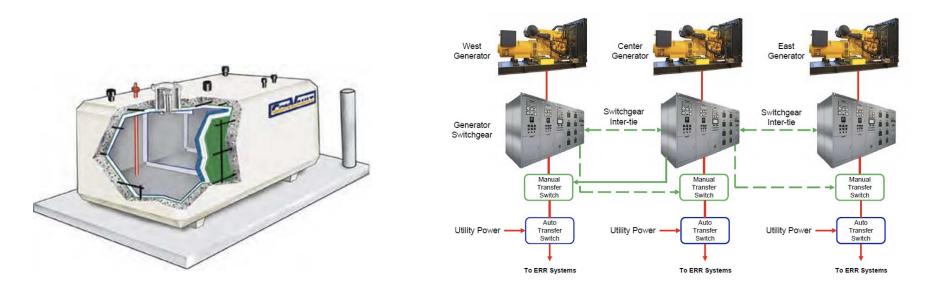


Incorporating Protective Design Features: ERR Systems Survivability


- Enhanced Evacuation, Rescue, and Recovery (ERR) systems and features for operational survivability
- Hardened and secured critical ERR systems rooms

Incorporating Protective Design Features: ERR Systems Survivability

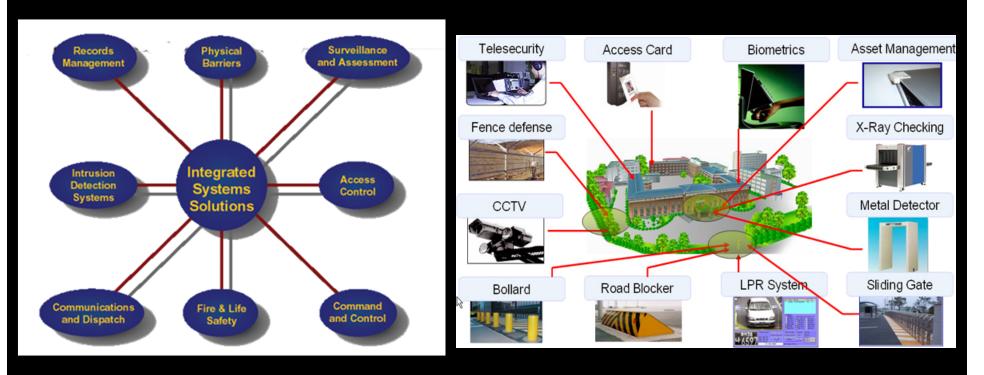
- Enhanced Evacuation, Rescue and Recovery (ERR) systems and features for operational survivability
 - Fire sprinkler loop
 - Improved fire suppression system
 - Improved fire alarm survivability



Incorporating Protective Design Features: ERR Systems Survivability

- Enhanced Evacuation, Rescue and Recovery (ERR) systems and features for operational survivability
 - Enhanced emergency power distribution, increased fuel storage
 - Improved emergency and normal power distribution
 - Alternate circuit emergency lights
 - Improved IT backbone redundancy

Incorporating Protective Design Features Electronic Security and Situational Awareness


- Transbay Transit Center
- Extensive video surveillance, biometric access control, and intrusion detection systems
- Enhanced lighting to support higher resolution video surveillance

Incorporating Protective Design Features Electronic Security and Situational Awareness

- Incorporation of situational awareness systems integrated with video analytics
- Physical Security Information Management (PSIM)
 - collect and integrate data as "actionable knowledge"

Incorporating Protective Design Features: CBRN Event Detection and Mitigation

- Informed by DHS/S&T, DNDO, & BioWatch Programs
- Chemical, Biological, Radiological, and Nuclear (CBRN) detection and mitigation program
- Modify and monitor air intakes
- HVAC upgrades
- Enhance building perimeter isolation
- Protect SOC & FCC
- Install infrastructure to support detection systems

Looking Forward Occupancy & Operations

- Protective design enhancements are fundamental to creating <u>safe spaces</u> through facility design and construction
- The DGC calls for a robust Situational Awareness Platform supported by a Converged Information Technology Network to inform <u>safe operations</u>
 - Converged Network will collect, coordinate, process and redistribute information as "actionable knowledge"
 - Provides real time awareness as the basis for executing the pre-planned policies and procedures by facility staff, security, and emergency responders
 - Essential to threat identification/mitigation and incident response/management

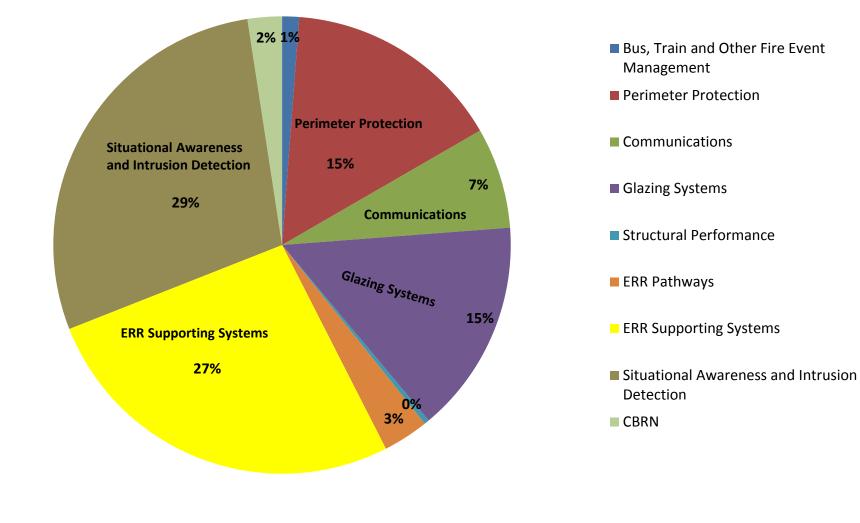
Protective Design Implications

- Significant investments well beyond building code stipulations representing significant liability reductions
- Represent best industry standards of practice and care
- Essential to obtain SAFETY Act Designation and Certification
- Assist in the acquisition of additional Federal funding (present and future)
- Security staffing and law enforcement incident response and crime prevention optimized
- Identify the TJPA Program as a national model for safe multi-modal transit center design, construction and operation

Learning from Lessons Learned

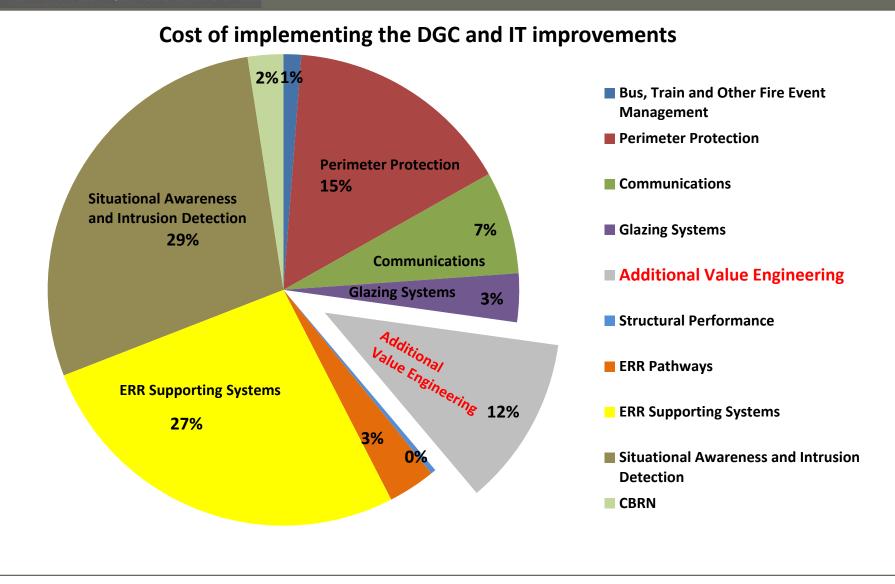
- The world's great cities have been the stage for unfortunate and tragic events:
 - Moscow
 - London
 - New York City
 - Tokyo
 - Oslo

- Madrid
- Rome
- Istanbul
- Jerusalem
- Athens
- San Francisco is one of the nation's premier cities
- Recommended DGC consistent with those being employed on facility designs in NY, Washington DC, Chicago, Boston, Philadelphia, and elsewhere
- The RVA process and DGC will substantially reduce the possibility and extent of a Transit Center event
- Funding these RVA initiatives is essential to achieve these safety, security and liability reduction objectives


Addressing RVA Design Guidance Criteria

- Design team analyzed design and construction impacts of implementing the recommended DGC
- Increases estimated cost of construction by \$64.3 million
 - Bus, Train and Other Fire Event Management
 - Vehicular and Pedestrian Perimeter Protection
 - Radio, Cellular, and Mass Notification Communications
 - Glazing Systems Hazard Management
 - Structural Systems Seismic, Fire, & Explosive Performance
 - Evacuation, Rescue & Recovery Pathways Survivability
 - Evacuation, Rescue & Recovery Supporting Systems
 Operational Resiliency
 - Situational Awareness, Access Control, & Intrusion Detection
 - CBRN Detection and Mitigation

Addressing RVA Design Guidance Criteria


Transbay Transit Center

Cost of implementing the DGC and IT improvements

Addressing RVA Design Guidance Criteria

Transbay Transit Center

Transbay Transit Center

Program Contingencies & Reserves

Contingencies & Reserves

Transbay Transit Center

<u>Design Contingency</u>

- Contained within construction budget
- Meant to capture scope not reflected in preliminary design drawings
- Reduced to 0% as construction documents are completed

Construction Contingency

- Contained within construction budget
- Reserved to fund construction contract changes after award due to unforeseen conditions and other changes

CM/GC Contingency

- Contained within construction budget
- Intended to address coordination issues between trade subcontractors, schedule recovery, and related issues

<u>Program Reserve</u>

- Independent budget category
- Reserve against all program budget requirements

Contingencies & Reserves

Transbay Transit Center

A review of all contingencies and reserves has been performed to ensure that recommended budget adjustment is comprehensive

Schedule Contingency

- Independent budget category
- Reserve for extended costs to manage the project if not completed as scheduled

Market Recovery Adjustment

- Contained within construction budget
- Recommended adjustment to the budget based on Bay Area market conditions
- Significant increase in construction activity in San Francisco and the region
- Substructure package represented a return to normalcy in contractor margins
- Decreased competition and higher returns expected to impact future trade subcontract bids

Contingencies & Reserves

Transbay Transit Center

Current Contingencies & Reserves			
Design Contingency	8.2		
Construction Contingency	33.2		
CM/GC Contingency	16.1		
Program Reserve	21.4		
Sub-Total Current Reserves	\$ 78.9		
Recommended Additional Contingencies & Reserves			
Market Recovery Adjustment	55.4		
Replenish Program Reserves	25.0		
Construction Contingency (total 8% of to-go scope)	25.0		
Schedule Contingency	\$5.0		
Sub-Total Recommended Additional Reserves	\$ 110.4		

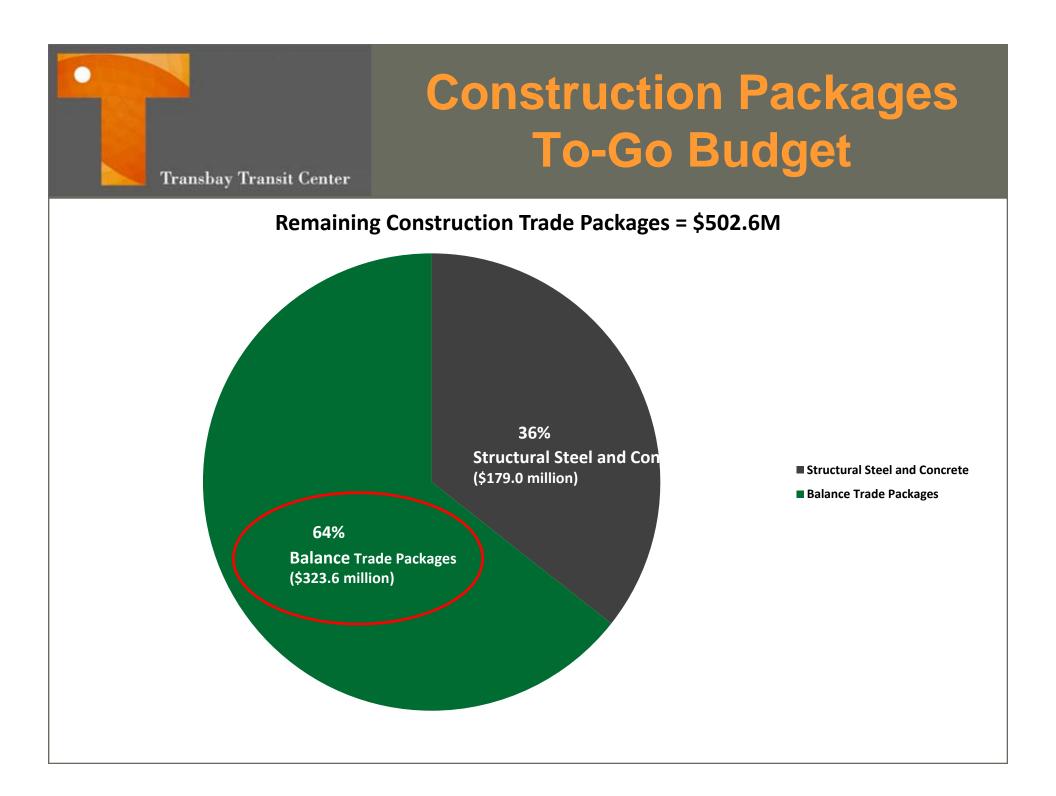
Transbay Transit Center

Design, Bidding and Construction Schedule

Schedule For Bus Operations Maintained

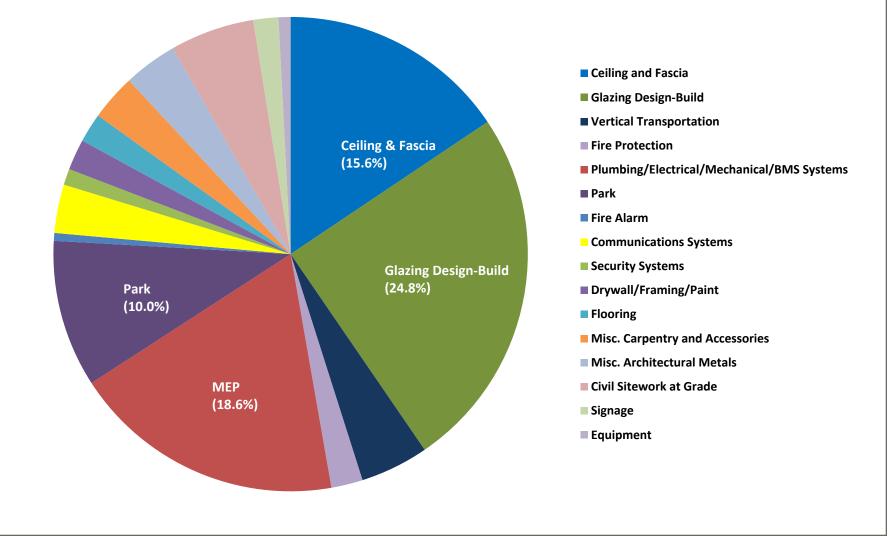
- The construction of the buttress has driven the critical path for excavation and subsequent construction
- 100% Construction Document completion extended to integrate updated RVA findings
- Extended design and bidding periods has impacted design and CM/GC pre-construction expenses

Re-sequencing of construction has allowed TJPA to maintain October 2017 date for start of bus operations

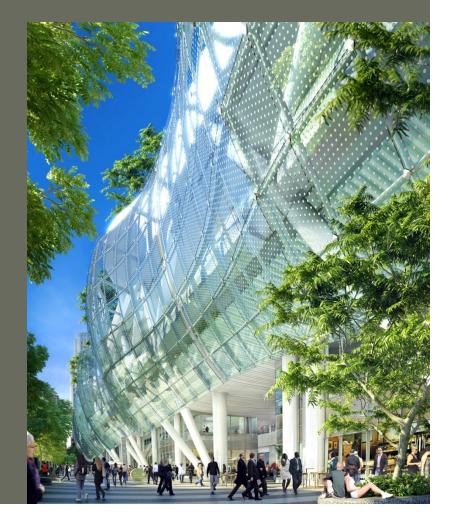

Current Phase 1 Milestones

Transbay Transit Center

August 2010 Vacate Terminal/Begin Demolition April 2011 **Begin Shoring Wall Construction Complete Excavation** February 2014 **Complete Below-Grade Construction** July 2015 June 2017 Complete Construction of Bus Ramps **Complete Superstructure Construction** June 2016 Complete Rooftop Park October 2017 **Begin Bus Operations** October 2017


Recommended Budget Adjustment

Remaining Construction Trade Packages


Transbay Transit Center

TCB Construction Balance Trade Packages = \$322.3 million

Awning System Value Engineering

- Largest single cost element after Transit Center structure
- Has a significant RVA associated cost
- Alternate materials will reduce base system cost and reduce RVA cost impacts from 64.3 to 56.8 million
- Target total cost savings of \$17.5 million

Baseline & Proposed Budget (millions)

Baseline **Project Costs** Proposed Temporary Terminal \$25.7 \$25.3 **Bus Storage** \$24.8 \$22.9 Demolition (Exist and Temp Term) \$16.8 \$16.2 **Utility Relocation** \$29.4 \$65.6 \$181.9 Transit Center Building Design \$143.1 Transit Center Building Construction \$1,056.8 \$909.7 **Bus Ramps** \$53.7 \$40.2 **ROW** Acquisition \$72.9 \$71.9 **ROW Support** \$4.8 \$5.3 \$290.0 Programwide \$243.6 Program Reserve \$46.5 \$45.2 TOTAL \$1,589.0 \$1,803.3

Transbay Transit Center

\$49.8 million in Net New Revenue identified, resulting in \$164.5 in Additional Revenue Required

Revenue Plan for Estimated Draft Budget Adjustment

Transbay Transit Center	Estimate Revenue R	
RVA Costs		\$56.8
Contingencies and	Program Reserves	\$110.4
Other Construction	Costs	\$12.0
Soft and Programw	ide Costs	\$35.1
Estimated Draft Bu	dget Adjustment	\$214.3
Net New Revenue	Identified	\$49.8
Estimated Additio	nal Revenue Required	\$164.5

Net New Revenues

- Increased Land Sales Values:
 - \$53 million increase, based on 2013 "Conservative Appreciation" update of land values and likely RFP schedule
- TCDP Impact Fees for Park:
 - \$15 million for City Park included in Transit Center District Plan Implementation Document
- *Reduction in RTIP Funds:*
 - \$18.2 million no longer available during Phase 1 schedule, based on SFCTA prioritization of local needs and State gas tax revenue projections

Draft Additional Revenue Strategy

Total	\$164.5
Other Discretionary Funds	\$31.8
Accelerated Land Sales from Phase 2	\$10.5
One Bay Area Grant Program	\$10.2
Accelerated Prop K	\$15.0
Increase TIFIA Loan	\$97.0

Target Revenues

- Increase TIFIA Loan Amount:
 - Modify and increase the existing TIFIA loan by up to \$97 million
- Accelerate SF Prop K Sales Tax:
 - Acceleration of funds currently programmed in FY34 to Phase 1 construction period yields an estimated \$15 million
- One Bay Area Grant Program:
 - Region's program to distribute federal STP/CMAQ funds via county congestion management agencies; funding strategy includes TJPA's request of \$10 million for bike and pedestrian elements; programming decisions to be finalized in Spring 2013; currently in the Upper Tier of candidate projects

- Accelerated Land Sales from Phase 2:
 - Could include no-interest loan based on estimated values of Parcel F and Block 4
- Other Discretionary Funds:
 - May include Federal funds such as PNRS or TIGER, or local/regional funds required due to contract certification needs and funding eligibility issues